Hölder continuity and bounds for fundamental solutions to nondivergence form parabolic equations

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Averaging for Fundamental Solutions of Parabolic Equations

Herein, an averaging theory for the solutions to Cauchy initial value problems of arbitrary order, "-dependent parabolic partial di erential equations is developed. Indeed, by directly developing bounds between the derivatives of the fundamental solution to such an equation and derivatives of the fundamental solution of an \averaged" parabolic equation, we bring forth a novel approach to compar...

متن کامل

Hölder Estimates for Solutions of Degenerate Nondivergence Elliptic and Parabolic Equations

We deal with a class of nondivergence type elliptic and parabolic equations degenerating at the coordinate hyperplanes. Assuming that the degeneration is coordinatewise and varies regularly, we prove the Hölder continuity of solutions. Also, the approximative solutions are considered. §

متن کامل

Gradient bounds for solutions of elliptic and parabolic equations

Let L be a second order elliptic operator on R with a constant diffusion matrix and a dissipative (in a weak sense) drift b ∈ L loc with some p > d. We assume that L possesses a Lyapunov function, but no local boundedness of b is assumed. It is known that then there exists a unique probability measure μ satisfying the equation Lμ = 0 and that the closure of L in L1(μ) generates a Markov semigro...

متن کامل

The Fundamental Solutions for Fractional Evolution Equations of Parabolic Type

where 0 < α≤ 1, Γ(α) is the gamma function, {A(t) : t ∈ [0,T]} is a family of linear closed operators defined on dense set D(A) in a Banach space E into E, u is the unknown Evalued function, u0 ∈ D(A), and f is a given E-valued function defined on [0,T]. It is assumed that D(A) is independent of t. Let B(E) denote the Banach space of all linear bounded operators in E endowed with the topology d...

متن کامل

Hölder continuity of solutions to the Monge - Ampère equations on compact Kähler manifolds

X ω = 1. An upper semicontinuous function φ : X → [−∞,+∞) is called ω-plurisubharmonic (ω-psh) if φ ∈ L(X) and ωφ := ω + dd φ ≥ 0. By PSH(X,ω) (resp. PSH(X,ω)) we denote the set of ω-psh (resp. negative ω-psh) functions on X . The complex Monge-Ampère equation ω u = fω n was solved for smooth positive f in the fundamental work of S. T. Yau (see [Yau]). Later S. Kolodziej showed that there exist...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Analysis & PDE

سال: 2015

ISSN: 1948-206X,2157-5045

DOI: 10.2140/apde.2015.8.1